Home IMS

4.2.2.2.1 No de-registration during the authentication

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_ NO_DE-REGISTRATION_AUTH_FAIL
Threat Reference

O.3.2 Threats related to de-registration during the authentication

Requirement Name

No de-registration during the authentication

Requirement Reference

TS 33.203 [3], clause 6.1.1

Requirement Description

"It should be noted that the UE initiated re-registration opens up a potential denial-of-service attack. That is, an attacker could try to register an already registered IMPU and respond with an incorrect authentication response in order to make the HN de-register the IMPU. For this reason a subscriber, when registered, shall not be de-registered if it fails an authentication."

as specified in TS 33.203 [3], clause 6.1.1.

Test Purpose

Verify the S-CSCF shall not de-register the registered UE when it fails an authentication during re-registration.

Pre-Conditions
  • S-CSCF under test is connected in simulated/real network environment including P-CSCF and HSS.

  • The UE supporting IMS AKA has already been registered into the IMS network.

  • The tester shall have access to the Mw interface between the P-CSCF and S-CSCF.

  • The tester shall have access to the Cx interface between the HSS and S-CSCF.

Execution Steps
  1. During a new IMS AKA procedure, the UE initiates the re-registration scenario, the tester sends a SM7 register message including the IMPI, and an incorrect authentication response.

  2. The S-CSCF under test retrieves the active XRES for that user and uses this to check the received authentication response

Expected Results

The S-CSCF sends a 4xx Auth_Failure towards the UE indicating that authentication has failed.

The S-CSCF does not initiate de-registration procedure within the Registration expiration interval defined in TS 24.229 [6], i.e. send either Cx-Put (Public User Identity, Private User Identity, clear S‑CSCF name) or Cx-Put (Public User Identity, Private User Identity, keep S‑CSCF name) to the HSS. Or, the IMPU status in the HSS is registered within the Registration expiration interval defined in TS 24.229 [6].

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text.

Save the logs and the communication flow in a .pcap file.

PDFs 4398d2d3843a545e56e452be52b95b9f

4.2.2.2.2 Unprotected register message

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_UNPROTECTED_REGISTER_MESSAGE
Threat Reference

O.3.3.1 Unprotected register message

Requirement Name

Unprotected register message

Requirement Reference

TS 33.203 [3], clause 7.4.0

Requirement Description

"If the UE has an already active pair of security associations, then it shall use this to protect the REGISTER message. If the S‑CSCF is notified by the P‑CSCF that the REGISTER message from the UE was integrity-protected it may decide not to authenticate the user by means of the AKA protocol. However, the UE may send unprotected REGISTER messages at any time. In this case, the S‑CSCF shall authenticate the user by means of the AKA protocol."

as specified in TS 33.203 [3], clause 7.4.0.

Test Purpose

Verify whether the S‑CSCF authenticates the user by means of the AKA protocol, if the UE sends unprotected REGISTER messages, regardless whether the UE is already registered or not.

Pre-Conditions
  • S-CSCF network product are connected in simulated/real network environment.

  • The list of ordered integrity and encryption algorithms are configured on the P-CSCF under test.

  • The UE and the P-CSCF are simulated.

  • The UE supports a list of ordered integrity and encryption algorithms.

  • The tester has access to the Gm interface between the UE and P-CSCF.

  • The tester has access to the Mw interface between the P-CSCF and S-CSCF.

  • The UE has an already active pair of security associations.

Execution Steps

This test is performed in the Authenticated re-registration procedure, the UE has an already active pair of security associations.

  1. The UE sends unprotected REGISTER messages (SM1) to the P-CSCF.

  2. The P-CSCF sends unprotected REGISTER messages (SM2) to the S-CSCF under test.

  3. The S-CSCF under test receives the SM2 from the P-CSCF.

  4. The tester examines whether the S-CSCF under test sends SM4: Auth_Challenge to the P-CSCF to authenticate the user by means of the AKA protocol.

Expected Results

The S-CSCF under test authenticates the user by means of the AKA protocol after.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs 120e79b29bd4d8652f7bd7578543f6ca

4.2.2.2.3 Synchronization failure handling

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_SYNC_FAIL_S-CSCF
Threat Reference

O.3.3.2 No resynchronization

Requirement Name

Synchronization failure handling

Requirement Reference

TS 33.203 [3], clause 6.1.3

Requirement Description

"The HSS checks the AUTS as in clause 6.3.5 of TS 33.102 [1]. After potentially updating the SQN, the HSS sends new AVs to the S‑CSCF in CM4.

+--------------------------------------------------------------------+---+ | CM4: | | | | | | Cx-AV-Req-Resp(IMPI, | | | n,RAND~1~\|\|AUTN~1~\|\|XRES~1~\|\|CK | | | ~1~\|\|IK~1~,....,RAND~n~\|\|AUTN~n~\|\|XRES~n~\|\|CK~n~\|\|IK~n~) | | +====================================================================+===+ +--------------------------------------------------------------------+---+

When the S‑CSCF receives the new batch of authentication vectors from the HSS it deletes the old ones for that user in the S‑CSCF.

The rest of the messages i.e. SM10-SM18 including the Cx messages are exactly the same as SM4-SM12 and the corresponding Cx messages in 6.1.1."

as specified in TS 33.203[2], clause 6.1.3.

Test Purpose

Verify that in synchronization failure scenario, a new authentication will be triggered by the S-CSCF.

Pre-Conditions
  • Test environment with UE, P-CSCF and HSS. The UE, P-CSCF and HSS may be simulated.

  • S-CSCF network product is connected in emulated/real network environment.

Execution Steps
  1. The UE sends an SM7 to the S-CSCF under test with REGISTER(Failure = Synchronization Failure, AUTS, IMPI).

  2. The S-CSCF under test sends a CM3 message to the HSS with Cx-AV-Req(IMPI, RAND,AUTS, m).

  3. The HSS sends a CM4 message to the S-CSCF under test with Cx-AV-Req-Resp(IMPI, n, RAND~1~\|\|AUTN~1~\|\|XRES~1~\|\|CK~1~\|\|IK~1~,....,RAND~n~\|\|AUTN~n~\|\|XRES~n~\|\|CK~n~\|\|IK~n~).

Expected Results

After receiving CM4 from the HSS, the S-CSCF initiates a new authentication towards the UE, and sends the RAND~i~ and AUTN~i~ to the UE, where RAND~i~ and AUTN~i~ belong to one of the authentication vectors received in CM4 message.

Expected Format of Evidence

Save the logs and the communication flow in a .pcap file.

PDFs 67d32707559c6f9aeeac3bfce4a224a3

4.2.2.3.1 High-priority algorithm selection

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_HIGH_PRIORITY_ALGORITHM_SELECTION
Threat Reference

O.2.2.1 High-priority algorithm selection

Requirement Name

High-priority algorithm selection

Requirement Reference

TS 33.203 [3], clause 7.2

Requirement Description

"In order to determine the integrity and encryption algorithm the P‑CSCF proceeds as follows: the P‑CSCF has a list of integrity and encryption algorithms it supports, ordered by priority. The P‑CSCF selects the first algorithm combination on its own list which is also supported by the UE. If the UE did not include any confidentiality algorithm in SM1 then the P-CSCF shall either select the NULL encryption algorithm or abort the procedure, according to its policy on confidentiality. "

as specified in TS 33.203 [3], clause 7.2.

Test Purpose

Verify the P‑CSCF selects the highest priority algorithm combination on its own list which is also supported by the UE.

Pre-Conditions
  • P-CSCF under test is connected in simulated/real network environment.

  • The list of ordered integrity and encryption algorithms are configured on the P-CSCF under test by the tester.

  • The UE supporting IMS AKA may be simulated.

  • The UE supports a list of integrity and encryption algorithms.

  • The tester has access to the Gm interface between the UE and P-CSCF.

Execution Steps

This test is performed in the registration procedure, the UE sends a Register message towards the S‑CSCF through the P-CSCF to register the location of the UE and to set-up the security mode.

  1. The UE sends SM1 with integrity and encryption algorithms list to the P-CSCF under test.

  2. The P-CSCF under test receives the SM1 with integrity and encryption algorithms list. The P-CSCF under test selects algorithms.

  3. The tester examines the selected algorithm combination in the SM6 sent from the P-CSCF under test to the UE via the Gm interface.

Expected Results

The selected algorithms are the first algorithm combination on its own list which is also supported by the UE.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file

PDFs 16bbd9165314fa69792474a3fa2dc842

4.2.2.3.2 Bidding down on security association set-up

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_BIDDING_DOWN_ON_SECURITY_ASSOCIATION_SET UP
Threat Reference

O.2.2.2 Bidding down on security association set-up

Requirement Name

Bidding down on security association set-up

Requirement Reference

TS 33.203 [3], clause 7.2

Requirement Description

"After receiving SM7 from the UE, the P‑CSCF shall check whether the integrity and encryption algorithms list, SPI_P and Port_P received in SM7 is identical with the corresponding parameters sent in SM6. It further checks whether SPI_U and Port_U received in SM7 are identical with those received in SM1. If these checks are not successful the registration procedure is aborted. The P‑CSCF shall include in SM8 information to the S‑CSCF that the received message from the UE was integrity protected as indicated in clause 6.1.5. The P‑CSCF shall add this information to all subsequent REGISTER messages received from the UE that have successfully passed the integrity check in the P‑CSCF."

as specified in TS 33.203 [3], clause 7.2.

Test Purpose

Verify the P‑CSCF checks whether the integrity and encryption algorithms list, SPI_P and Port_P received in SM7 is identical with the corresponding parameters sent in SM6.

Verify the P‑CSCF checks whether SPI_U and Port_U received in SM7 are identical with those received in SM1.

Verify whether the P‑CSCF abort the registration procedure, if the above checks are not successful.

Pre-Conditions
  • The P-CSCF under test is connected in simulated/real network environment.

  • The list of ordered integrity and encryption algorithms are configured on the P-CSCF under test.

  • The UE and the S-CSCF are simulated.

  • The UE supports a list of ordered integrity and encryption algorithms. The list contains at least one encryption algorithm other than NULL algorithm.

  • The tester has access to the Gm interface between the UE and P-CSCF.

  • The tester has access to the Mw interface between the P-CSCF and S-CSCF.

Execution Steps

This test is performed in the registration procedure, the UE sends a Register message towards the S‑CSCF through the P-CSCF to register the location of the UE and to set-up the security mode.

Test cases 1-4 are performed as follows:

  1. The UE sends SM1 with the Security Parameter Index values (SPI_U) and the protected ports selected by the UE (Port_U) to the P-CSCF under test.

  2. The P-CSCF under test receives the SM1 with the Security Parameter Index values (SPI_U) and the protected ports selected by the UE (Port_U). The P-CSCF under test store the SPI_U and the Port_U received in the SM1.

  3. The P-CSCF under test contains the SPI_P, the ports assigned by the P CSCF (Port_P) and a list of integrity and encryption algorithms supported by the P-CSCF under test. The P-CSCF under test sends SM6 to the UE.

  4. The UE receives the SM6 from the P-CSCF under test.

Test case 1:

The UE contains the incorrect SPI_U and Port_U, which are different from SPI_U and Port_U sent in SM1, and SPI_P and Port_P received in SM6, and a list of integrity and encryption algorithms received in SM6 supported by the P-CSCF under test in the SM7. The UE sends SM7 to the P-CSCF under test.

Test case 2:

The UE contains the incorrect SPI_U and Port_U, which are different from SPI_U and Port_U sent in SM1, and incorrect SPI_P and Port_P, which are different from SPI_U and Port_U received in SM6, and a list of integrity and encryption algorithms received in SM6 supported by the P-CSCF under test in the SM7. The UE sends SM7 to the P-CSCF under test.

Test case 3:

The UE contains the SPI_U and Port_U sent in SM1, and incorrect SPI_P and Port_P, which are different from SPI_U and Port_U received in SM6, and a list of integrity and encryption algorithms supported by the P-CSCF under test in the SM7. The UE sends SM7 to the P-CSCF under test.

Test case 4:

The UE contains the SPI_U and Port_U sent in SM1, and SPI_P and Port_P received in SM6, and a list of integrity and encryption algorithms in the SM7 which are different from those sent by the P-CSCF under test in the SM6. The UE sends SM7 to the P-CSCF under test.

Expected Results

For text 2-5, the P-CSCF under test aborts the registration procedure, and sends a suitable 4xx response message to the UE.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs 26871ff38ca9e2397b42c8a62f0f0e5c

4.2.2.3.3 Protection of IMS signalling in transfer

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_PROTECT_IMS_SIGNALLING_TRANSFER
Threat Reference

O.2.3 Threats related to IMS signalling transport

Requirement Name

Protection of IMS signalling transported between UE and P-CSCF

Requirement Reference

TS 33.203 [3], clause 7.1

Requirement Description

"For protecting IMS signalling between the UE and the P‑CSCF it is necessary to agree on shared keys that are provided by IMS AKA, and a set of parameters specific to a protection method. The security mode setup (cf. clause 7.2) is used to negotiate the SA parameters required for IPsec ESP with authentication and confidentiality, in accordance with the provisions in clauses 5.1.3, 5.1.4, 6.2, and 6.3.

The SA parameters that shall be negotiated between UE and P‑CSCF in the security mode set-up procedure are:

  • Encryption algorithm

Both the UE and the P‑CSCF shall adhere to the profiling given in clause 5.3.3 of 33.210 [5] with the addition that only algorithms that can be signalled according to Annex H needs to be supported.

  • Integrity algorithm

Both the UE and the P‑CSCF shall adhere to the profiling given in clause 5.3.4 of 33.210 [5] with the addition that only algorithms that can be signalled according to Annex H needs to be supported. "

as specified in TS 33.203 [3], clause 7.1.

Test Purpose

Verify the IMS signalling protection mechanisms implemented in P-CSCF adherer to profiling given in clause 5.3.4 of TS 33.210 [5] with the addition that only algorithms that can be signalled according to Annex H of TS 33.203 [3] needs to be supported.

Pre-Conditions
  • P-CSCF network products are connected in simulated/real network environment.

  • The UE supporting IMS AKA may be simulated.

  • Tester shall have the knowledge of the security profiles for the IPSec ESP protection.

  • Tester shall have the keys derived from the IMS AKA to negotiate the SA parameters required for IPSec ESP.

Execution Steps

The requirement mentioned in this clause is tested in accordance with the procedure mentioned in clause 4.2.3.2.4 of TS 33.117 [3].

Expected Results
  • The P-CSCF under test and the UE established TLS if the TLS profiles used by the UE are compliant with the profile requirements in TS 33.203[3] Annex H.

  • The P-CSCF under test and the UE failed to establish TLS if the TLS profiles used by the UE are forbidden in TS 33.203 [3] Annex H.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs 2e11a8f490fbf235ea5d939039faeccc

4.2.2.3.4 Bidding down on security association set-up in case the P-CSCF policy requiring confidentiality

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_BIDDING_DOWN_ON_SECURITY_ASSOCIATION_SET UP
Threat Reference

O.2.2.2 Bidding down on security association set-up

Requirement Name

Bidding down on security association set-up

Requirement Reference

TS 33.203 [3], clause 7.2

Requirement Description

"> > NOTE 4: It should be noted that, if the P-CSCF policy requires confidentiality, then all UEs with no encryption support would be denied access to the IMS network. This would apply in particular to UEs, which support only a Release 5-version of this specification or only GIBA according to Annex T of this specification."

as specified in TS 33.203 [3], clause 7.2.

Test Purpose

Verify that the P-CSCF policy requires confidentiality, then all UEs with no encryption support would be denied access to the IMS network.

NOTE1: The test case below is optional, which only applies to the P- policy requires confidentiality.

Pre-Conditions
  • The P-CSCF policy requires confidentiality.

  • The UE and the S-CSCF are simulated.

  • The tester has access to the Gm interface between the UE and P-CSCF.

Execution Steps

This test is performed in the registration procedure, the UE sends a Register message towards the S‑CSCF through the P-CSCF to register the location of the UE and to set-up the security mode.

Test case 1:

  1. The UE includes only UE integrity algorithms list in SM1 to the P-CSCF under test.

  2. The P-CSCF under test receives SM1 and sends SM2 to the S-CSCF.

Test case 2:

  1. The UE includes UE integrity and encryption algorithms list in SM1 to the P-CSCF under test, where the encryption algorithms are NULL.

  2. The P-CSCF under test receives SM1.

Expected Results

For test case, the P-CSCF sends a suitable error message to the UE.

NOTE 2: The suitable error message could be used to identity that the procedure is aborted.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text.

Save the logs and the communication flow in a .pcap file.

PDFs d265af6078264f5fe43c2b5dff668c8e

4.2.2.3.5 Different SPIs

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_DIFFERENT_SPIS
Threat Reference

O.2.4 Threats related to SPI allocation

Requirement Name

Different SPIs

Requirement Reference

TS 33.203 [3], clause 7.1

Requirement Description

"The SPI is allocated locally for inbound SAs. The triple uniquely identifies an SA at the IP layer. The UE shall select the SPIs uniquely, and different from any SPIs that might be used in any existing SAs (i.e. inbound and outbound SAs). The SPIs selected by the P‑CSCF shall be different than the SPIs sent by the UE, cf. clause 7.2. In an authenticated registration, the UE and the P‑CSCF each select two SPIs, not yet associated with existing inbound SAs, for the new inbound security associations at the UE 's client and server ports and the P‑CSCF 's client and server ports respectively.

NOTE 3: This allocation of SPIs ensures that protected messages in the uplink always differ from protected messages in the downlink in, at least, the SPI field. This thwarts reflection attacks. When several applications use IPsec on the same physical interface the SIP application should be allocated a separate range of SPIs."

as specified in TS 33.203 [3], clause 7.1.

Test Purpose

Verify the P‑CSCF selects SPIs that are different than the SPIs sent by the UE.

Pre-Conditions
  • P-CSCF under test is connected in simulated/real network environment.

  • The UE supporting IMS AKA may be simulated.

  • The tester has access to the Gm interface between the UE and P-CSCF.

Execution Steps

This test is performed in the registration procedure, the UE sends a Register message towards the S‑CSCF through the P-CSCF to register the location of the UE and to set-up the security mode.

  1. The UE sends SM1 with spi_uc (the SPI of the inbound SA at UE's the protected client port) and spi_us (the SPI of the inbound SA at the UE's protected server port) to the P-CSCF under test.

  2. The P-CSCF under test receives the SM1 with spi_uc and spi_us. The P-CSCF under test selects spi_pc (the SPI of the inbound SA at the P‑CSCF's protected client port) and spi_ps (the SPI of the inbound SA at the P‑CSCF's protected server port).

  3. The tester examines the spi_pc and spi_ps in the SM6 sent from the P-CSCF under test to the UE via the Gm interface.

Expected Results

The spi_pc and spi_ps are different than spi_uc and spi_us.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs 9427cbc7a37f6ee633919f4c98b368ed

4.2.2.4.1 Encryption in network hiding

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_ENCRYPTION IN NETWORK HIDING
Threat Reference

O.4.2.1 encryption in network hiding

Requirement Name

Encryption in network hiding

Requirement Reference

TS 33.203 [3], clause 6.4

Requirement Description

"The Hiding Mechanism is optional for implementation. All I-CSCFs/IBCFs in the HN shall share the same encryption and decryption key Kv. If the mechanism is used and the operator policy states that the topology shall be hidden the I-CSCF/IBCF shall encrypt the hiding information elements when the I-CSCF/IBCF forwards SIP Request or Response messages outside the hiding network's domain. The hiding information elements are entries in SIP headers, such as Via, Record-Route, Route and Path, which contain addresses of SIP proxies in hiding network. When I-CSCF/IBCF receives a SIP Request or Response message from outside the hiding network's domain, the I-CSCF/IBCF shall decrypt those information elements that were encrypted by I-CSCF/IBCF in this hiding network domain."

as specified in TS 33.203 [3], clause 6.4.

Test Purpose

Verify the I-CSCF encrypts the hiding information elements when the I-CSCF forwards SIP Request or Response messages to the outside of the hiding network's domain, in cases of the network hiding mechanism is used and the operator policy states that the topology shall be hidden.

Verify the I-CSCF decrypts those information elements that were encrypted by the I-CSCF in this hiding network domain when the I-CSCF receives a SIP Request or Response message from the outside of the hiding network's domain, in cases of the network hiding mechanism is used and the operator policy states that the topology shall be hidden.

Pre-Conditions
  • I-CSCF network products are connected in simulated/real network environment.

  • The network hiding mechanism is configured to be used and the operator policy is configured that the topology shall be hidden.

  • The same encryption and decryption key Kv is configured on the I-CSCFs under test by the tester.

  • The encryption algorithm is configured on the I-CSCF under test by the tester.

  • The network element in the hiding network's domain may be simulated.

  • The network element outside the hiding network's domain may be simulated.

  • The tester has access to the interface between the element in the hiding network's domain and I-CSCF.

  • The tester has access to the interface between the element outside the hiding network's domain and I-CSCF.

Execution Steps

NOTE: This test is performed in case the network hiding mechanism and the encryption of the hiding information elements in the I-CSCF are implemented.

Test case 1: The I-CSCF forwards SIP messages to the outside of the hiding network's domain

  1. The network element in the hiding network's domain sends a SIP message which contains hiding information elements (e.g. addresses of SIP proxies) to the I-CSCF under test.

  2. The I-CSCF under test forwards the SIP message to the network element outside the hiding network's domain.

  3. The tester examines the SIP message forwarded to the network element outside the hiding network's domain.

Test case 2: The I-CSCF forwards SIP messages to the hiding network's domain

  1. The network element outside the hiding network's domain sends a SIP message which contains information elements that were encrypted by the I-CSCF in this hiding network domain to the I-CSCF under test.

  2. The I-CSCF under test forwards the SIP message to the network element in the hiding network's domain.

  3. The tester examines the SIP message forwarded to the network element in the hiding network's domain.

Expected Results

For Test case 1, the I-CSCF under test encrypts the hiding information elements when the I-CSCF under test forwards the SIP message to the network element outside the hiding network's domain.

For Test case 2, the I-CSCF under test decrypts those information elements that were encrypted by the I-CSCF in this hiding network domain when the I-CSCF under test forwards the SIP message to the network element in the hiding network's domain.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs e3b1e83c0230849977a7f8ea9640b5d4

4.2.2.5.1 Encryption in network hiding

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_ENCRYPTION IN NETWORK HIDING
Threat Reference

O.5.2.1 encryption in network hiding

Requirement Name

Encryption in network hiding

Requirement Reference

TS 33.203 [3], clause 6.4

Requirement Description

"The Hiding Mechanism is optional for implementation. All I-CSCFs/IBCFs in the HN shall share the same encryption and decryption key Kv. If the mechanism is used and the operator policy states that the topology shall be hidden the I-CSCF/IBCF shall encrypt the hiding information elements when the I-CSCF/IBCF forwards SIP Request or Response messages outside the hiding network's domain. The hiding information elements are entries in SIP headers, such as Via, Record-Route, Route and Path, which contain addresses of SIP proxies in hiding network. When I-CSCF/IBCF receives a SIP Request or Response message from outside the hiding network's domain, the I-CSCF/IBCF shall decrypt those information elements that were encrypted by I-CSCF/IBCF in this hiding network domain."

as specified in TS 33.203 [3], clause 6.4.

Test Purpose

Verify the IBCF encrypts the hiding information elements when the IBCF forwards SIP Request or Response messages to the outside of the hiding network's domain, in cases of the network hiding mechanism is used and the operator policy states that the topology shall be hidden.

Verify the IBCF decrypts those information elements that were encrypted by the IBCF in this hiding network domain when the IBCF receives a SIP Request or Response message from the outside of the hiding network's domain, in cases of the network hiding mechanism is used and the operator policy states that the topology shall be hidden.

Pre-Conditions
  • IBCF network products are connected in simulated/real network environment.

  • The encryption of the hiding information as the network hiding mechanism is configured to be used and the operator policy is configured that the topology shall be hidden.

  • The same encryption and decryption key Kv is configured on the IBCFs under test by the tester.

  • The encryption algorithm is configured on the IBCF under test by the tester.

  • The network element in the hiding network's domain may be simulated.

  • The network element outside the hiding network's domain may be simulated.

  • The tester has access to the interface between the element in the hiding network's domain and IBCF.

  • The tester has access to the interface between the element outside the hiding network's domain and IBCF.

Execution Steps

NOTE: This test is performed in case the network hiding mechanism and the encryption of the hiding information elements in the IBCF are implemented.

Test case 1: The IBCF forwards SIP messages to the outside of the hiding network's domain

  1. The network element in the hiding network's domain sends a SIP message which contains hiding information elements (e.g. addresses of SIP proxies) to the IBCF under test.

  2. The IBCF under test forwards the SIP message to the network element outside the hiding network's domain.

  3. The tester examines the SIP message forwarded to the network element outside the hiding network's domain.

Test case 2: The IBCF forwards SIP messages to the hiding network's domain

  1. The network element outside the hiding network's domain sends a SIP message which contains information elements that were encrypted by the IBCF in this hiding network domain to the IBCF under test.

  2. The IBCF under test forwards the SIP message to the network element in the hiding network's domain.

  3. The tester examines the SIP message forwarded to the network element in the hiding network's domain.

Expected Results

For Test case 1, the IBCF under test encrypts the hiding information elements when the IBCF under test forwards the SIP message to the network element outside the hiding network's domain.

For Test case 2, the IBCF under test decrypts those information elements that were encrypted by the IBCF in this hiding network domain when the IBCF under test forwards the SIP message to the network element in the hiding network's domain.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs 97051cf176d91fa475c2fdd9f4a31258

4.2.2.5.2 Replacement in network hiding

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_REPLACEMENT IN NETWORK HIDING
Threat Reference

O.5.2.2 replacement in network hiding

Requirement Name

Replacement in network hiding

Requirement Reference

TS 24.229 [6], clause 5.10.4.1

Requirement Description

"The IBCF shall apply network topology hiding to all header fields which reveal topology information, such as Via, Route, Record-Route, Service-Route, and Path."

as specified in TS 24.229 [6], clause 5.10.4.1.

Test Purpose

Verify the IBCF replaces the hiding information elements to constant values when the IBCF forwards SIP Request or Response messages to the outside of the hiding network's domain, in cases of the network hiding mechanism is used and the operator policy states that the topology shall be hidden.

Verify the IBCF replaces the constant values that were replaced by the IBCF in this hiding network domain to the hiding information elements when the IBCF receives a SIP Request or Response message from the outside of the hiding network's domain, in cases of the network hiding mechanism is used and the operator policy states that the topology shall be hidden.

Pre-Conditions
  • IBCF network products are connected in simulated/real network environment.

  • The replacement of the hiding information as network hiding mechanism is configured to be used and the operator policy is configured that the topology shall be hidden.

  • The network element in the hiding network's domain may be simulated.

  • The network element outside the hiding network's domain may be simulated.

  • The tester has access to the interface between the element in the hiding network's domain and IBCF.

  • The tester has access to the interface between the element outside the hiding network's domain and IBCF.

Execution Steps

NOTE: This test is performed in case the network hiding mechanism and the replacement of the hiding information elements in the IBCF are implemented.

Test case 1: The IBCF forwards SIP messages to the outside of the hiding network's domain

  1. The network element in the hiding network's domain sends a SIP message which contains hiding information elements (e.g. addresses of SIP proxies) to the IBCF under test.

  2. The IBCF under test forwards the SIP message to the network element outside the hiding network's domain.

  3. The tester examines the SIP message forwarded to the network element outside the hiding network's domain.

Test case 2: The IBCF forwards SIP messages to the hiding network's domain

  1. The network element outside the hiding network's domain sends a SIP message which contains information elements that were encrypted by the IBCF in this hiding network domain to the IBCF under test.

  2. The IBCF under test forwards the SIP message to the network element in the hiding network's domain.

  3. The tester examines the SIP message forwarded to the network element in the hiding network's domain.

Expected Results

For Test case 1, the IBCF under test replaces the hiding information elements to constant values when the IBCF under test forwards the SIP message to the network element outside the hiding network's domain.

For Test case 2, the IBCF under test replaces the constant values that were replaced by the IBCF in this hiding network domain to the hiding information elements when the IBCF under test forwards the SIP message to the network element in the hiding network's domain.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text. Save the logs and the communication flow in a .pcap file.

PDFs 03fa1a1a5803d2662cab7fe8e509e557

4.2.2.6.1 User authorization

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_USER_AUTHORIZATION
Threat Reference

O.6.2.1 No user authorization

Requirement Name

User authorization

Requirement Reference

TS 24.229 [6], clause 5.7.1.5

Requirement Description

"If the user is considered anonymous, the AS shall check whether the authorization policy defined for this request allows anonymous requests. If anonymous requests are allowed, then the AS can proceed with the requested functionality, otherwise, the AS shall not proceed with the requested functionality.

...

If the request is not authorized, the AS shall either:

  • reject the request according to the procedures defined for that request e.g., by issuing a 403 (Forbidden) response; or

  • send a 2xx final response if the authorization policy requires to deny the requested functionality, whilst appearing to the user as if the request has been granted. "

Test Purpose

Verify that the AS would reject the anonymous request if anonymous request is not allowed.

Pre-Conditions
  • The authorization policy of the AS does not allow anonymous request.

  • The UE is simulated.

  • The tester has access to the interface between the UE and AS.

Execution Steps

The UE sends the anonymous request message towards the AS, in which the P-Asserted-Identity is set to "Anonymous".

Expected Results

For test case, the AS either:

  • reject the request according to the procedures defined for that request e.g., by issuing a 403 (Forbidden) response; or

  • send a 2xx final response if the authorization policy requires to deny the requested functionality, whilst appearing to the user as if the request has been granted.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text.

Save the logs and the communication flow in a .pcap file.

PDFs 7f25b22160cc82b2d9e3da4d49529d37

4.2.2.6.2 ID privacy

Home IMS18.0.0
33226-h00   33226-h10    33226-i00
Test Name TC_USER_AUTHORIZATION
Threat Reference

O.6.2.1 No ID privacy

Requirement Name

ID privacy

Requirement Reference

TS 24.229 [6], clause 5.7.3

Requirement Description

"5.7.3 Application Server (AS) acting as originating UA

The AS can indicate privacy of the P-Asserted-Identity in accordance with RFC 3323 [33], and the additional requirements contained within RFC 3325 [34].

Where privacy is required, in any initial request for a dialog or request for a standalone transaction, the AS shall set a display-name of the From header field to "Anonymous" as specified in RFC 3261 [26] and set an addr-spec of the From header field to Anonymous User Identity as specified in TS 23.003 [3]. "

Test Purpose

Verify that the AS acting as originating UA should send the anonymous identity if privacy is required.

Pre-Conditions
  • The privacy of the P-Asserted-Identity is required in AS.

  • The UE is simulated.

Execution Steps

The AS under test sends the initial request for a dialog or request for a standalone transaction.

Expected Results

The display-name of the From header field of the initial request is set to "Anonymous".

The addr-spec of the From header field of the initial request is set to Anonymous User Identity.

Expected Format of Evidence

Provide evidence of the check of the product documentation in plain text.

Save the logs and the communication flow in a .pcap file.

PDFs f98e5944fa8f2a21737c2ac759d10e2c